
Liu, Fei, Alistair Moffat, Timothy Baldwin and Xiuzhen Zhang (to appear) Quit While Ahead: Evaluating Truncated
Rankings. In Proceedings of 39th International ACM SIGIR Conference on Research and Development in Information

Retrieval (SIGIR 2016), Pisa, Italy.

Quit While Ahead: Evaluating Truncated Rankings

Fei Liu, Alistair Moffat, Timothy Baldwin
The University of Melbourne

Melbourne, Australia

fliu3@student.unimelb.edu.au,
ammoffat@unimelb.edu.au, tb@ldwin.net

Xiuzhen Zhang
RMIT University

Melbourne, Australia

xiuzhen.zhang@rmit.edu.au

ABSTRACT
Many types of search tasks are answered through the computa-
tion of a ranked list of suggested answers. We re-examine the
usual assumption that answer lists should be as long as possible,
and suggest that when the number of matching items is potentially
small – perhaps even zero – it may be more helpful to “quit while
ahead”, that is, to truncate the answer ranking earlier rather than
later. To capture this effect, metrics are required which are attuned
to the length of the ranking, and can handle cases in which there
are no relevant documents. In this work we explore a generalized
approach for representing truncated result sets, and propose modi-
fications to a number of popular evaluation metrics.

1. INTRODUCTION AND BACKGROUND
Ranked answer lists are a staple of search; and mechanisms for

generating and evaluating them are widely known [1]. In most ex-
perimentation, ranked lists are taken to be of arbitrary length, that
is, potentially spanning every item in the underlying collection; or
to be of some fixed but large length, perhaps to depth d = 1,000.
But there are also situations in which there is only a small number
of relevant answers (“find the home page of . . . ”) or no relevant
answers to date (“how do I get LATEX to . . . ”), for which gener-
ating a long list of unhelpful results is counter-productive. When
confronted with such questions, an effective retrieval system might
truncate its ranking after just a few suggestions, or even offer no an-
swers at all, choosing to “quit while ahead”; assuming, of course,
that the user understands the message being conveyed when a trun-
cated ranking is generated by a system. Here we consider how to
compute an effectiveness score for rankings that are of variable –
and possibly zero – length, based on which we propose modifica-
tions to a range of popular evaluation metrics.

Effectiveness Metrics for Extended Rankings A large number of
effectiveness metrics for ranked lists have been described, covering
both binary relevance (the gain ri associated with position i in the
ranking is either zero or one), and graded relevance (ri may take
on arbitrary non-negative values). These include precision-focused
metrics such as Precision@k and Reciprocal Rank (RR), which is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’16, July 17–21, 2016, Pisa, Italy
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4069-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2911451.2914737

the precision at the first relevant document in the ranking. Other
metrics add a recall component, such as Average Precision (AP).

Järvelin and Kekäläinen [2] describe a top-weighted evaluation
metric they call discounted cumulative gain (DCG). A key de-
velopment in this metric is that items near the top of the ranking
are explicitly given a greater influence on the final score than are
items later in the ranking. The formulation usually used is given
by DCG@d =

∑d
i=1(ri/ log2(1+ i)), where d is the chosen eval-

uation depth. An issue with DCG is that the values generated are
unbounded; to address this, Järvelin and Kekäläinen also introduce
a normalized version (NDCG), defined as the DCG score at that
depth divided by the DCG of a permuted ideal ranking in which
all relevant documents are returned at the head of the answer list:
NDCG@d = DCG@d /DCGI@d. An NDCG@d score of 1.0
indicates that, down to depth d, the ranking is as good as would
have been attained by an omniscient system. Note, however, that
the DCG score of a ranking in which there are no relevant answers
is zero; and hence that NDCG is undefined on nil-answer queries.
Other recall-based metrics, including Average Precision and the Q-
measure [5], face the same challenge.

Moffat and Zobel [3] proposed an alternative top-weighted ap-
proach that avoids the need for the normalizing step. Their Rank-
Biased Precision (RBP) metric is based on a simple user model,
assuming that the user always looks at the first returned document,
and then continues from one depth i in the ranking to the next
depth i + 1 with a fixed probability p, their persistence. The ex-
pected per-document rate at which gain is accrued is then given by
RBP = (1 − p) ·∑∞i=1 ri · pi−1. Rank-biased precision assigns
a score of zero to an empty ranking list, regardless of whether the
query that led to the ranking has answers or not.

Effectiveness Metrics for Truncated Rankings Peñas and Ro-
drigo [4] note that in some question-answering (QA) scenarios, not
responding is preferable to responding incorrectly, and propose a
metric they denote c@1. Scores are based on having correct an-
swers at the head of the ranked list, together with a component that
is extrapolated for empty lists: c@1 = nac/n+(nac/n) · (nu/n),
where nac is the number of correctly answers across a set of n
questions, and nu is the number of unanswered questions. How-
ever, c@1 is only applicable in cases where each question has a
single correct answer, such as reading comprehension tests.

Another option for adding nil-answer assessment to an evalua-
tion is to treat questions for which there are no answers differently
from the has-answer queries. This may be appropriate if the distri-
bution for the two classes of questions is imbalanced and nil-answer
questions account for a small fraction of queries; the evaluation can
then be one of correct classification between the two classes, fol-
lowed by a standard evaluation within the has-answer class. For
example, in the TREC 2001 QA track, there are 49 nil-answer ques-

tions, out of 492 test questions. Similar statistics arise in the TREC
2002–2007 QA tracks. But note also that there are cases where nil-
answer queries dominate. For example, in duplicate question de-
tection for community question answering, the expectation is that
most new questions will not have previously been asked.

Sakai [5] proposed that NIL be regarded as a valid answer list of
length one with positive gain, and showed that under this interpreta-
tion the Q-Measure (and other recall-based approaches) can be used
to evaluate nil-answer questions. A similar approach was also used
in the 2001 TREC QA track [6], where systems were permitted to
return NIL in their answer lists. Any NIL’s that appeared were as-
signed a gain of ri = 1.0 if and only if there were no “actual”
answers to that query, and a gain of ri = 0 otherwise. Systems
were free to continue listing documents after the NIL, meaning that
a simple hedging strategy is to prefix NIL to every returned list; an-
other, to insert NIL part way through every answer list. We explore
the implications of this approach in more detail in Section 3.

2. EVALUATING ARBITRARY RANKINGS
All Rankings Are Different We propose that a system always be
viewed as returning a ranking of documents, and that the length of
that ranking always be regarded as having been determined by the
system in response to the query. We then require that the evaluation
process employed should be applicable to all rankings, including
those of zero length.

As a motivating example, consider the case of a query for which
there are known to be R = 3 relevant answers. For this query the
five-document ranking (reading ri values from left to right, with
“1” representing relevant, and “0” denoting non-relevant) “10100”
is almost certainly superior to the ranking “01001”, a relativity sup-
ported by all of RR, AP, NDCG, and RBP. Now consider the three-
element ranking “101”. It seems clear that “101” must be regarded
as superior (or, at the very least, not inferior) to “10100”, since it
has the relevant documents in the same positions, and fewer non-
relevant documents. Next, consider the ranking “011”. Where does
it fit in relation to the other three rankings? Most metrics would as-
sess it as being inferior to “101” and better than “01001”, but what
about in comparison to “10100”? That is, is: “101” > “10100” >
“011” > “01001” the preferred ordering from a user’s point of
view, where > is used as an abbreviation for numeric order, based
on score? Or is: “101” > “011” > “10100” > “01001” the pre-
ferred relationship? And, what about the ranking “1” – is one cor-
rect answer and no non-relevant answers better, or worse, than the
rankings shown, all of which contain two correct answers? Finally,
do any of these relativities change if instead of R = 3 relevant
documents, there are known to be R = 5, or R = 10?

In the proposed new framework, in which ranking length is also
regarded as being a factor that affects the score, dealing with nil-
answer queries becomes a natural extension. If a query has no an-
swers, then we would expect the evaluation metric to tell us that
“” > “0” > “00” > “000” , and so on. Indeed, if a query has no
answers, and a system returns a ranking containing no documents,
would we not wish the score of that ranking to be 1.0, representing
“fully correct system response, and cannot be improved on”?

Depth-Sensitive Evaluation To allow ranking length to influence
assessed effectiveness, we modify every ranking to add a nominal
terminal document at the first rank position after the last one sup-
plied by the retrieval system. For example the ranking “011” is
extended to make a new ranking “011t”, where “t” represents the
terminal document, and reflects that the system declined to provide
an answer document in that or any subsequent position. Provided

that a corresponding gain value rt is also assumed, any weighted-
precision effectiveness metric, such as RR, Precision@k, or RBP,
can then be used to score the ranking.

The key to making this approach work is selecting a value for
rt, the gain value associated with the terminal document. In the
2001 TREC QA Track, and in the example presented by Sakai [5],
rt = 1.0 iff the question is a nil-answer one, and rt = 0.0 if not.
We propose a more gradual approach. Suppose that the total gain
pool for the query is R ≥ 0. Then at depth d ≥ 0 in any given
ranking the fraction of the available gain that has been accrued is
given by

∑d
i=1 ri/R. On this basis, we define:

rt =

{
1 if R = 0∑d

i=1 ri/R if R > 0 .
(1)

To understand the implications of this definition, consider the met-
ric RR, defined for binary gain values as the reciprocal of the first
rank at which a relevant document appears. If a ranking of length d
contains a relevant answer, then RR has the same value as it always
does, since the terminal document at depth d + 1 has no bearing.
If a ranking of length d does not contain a relevant answer, and if
R > 0, then rt = 0 and hence the value of RR is zero, as it should
be – the system failed to return an answer that exists. But if R = 0,
then rt = 1, and the value of RR is given by 1/(d+1). That is, an
empty ranking will be given a score of 1.0 if there are no relevant
documents in the collection; the ranking “0” will be given a score
of 0.5 when R = 0, and so on. Overall, the adjusted RR′ computa-
tion that takes the terminal document into account smoothly adapts
its score on nil-answer queries, as required; and has its previous
behavior on has-answer queries.

In the case of RBP, rt is used in a slightly different way. Since
RBP computes an infinite weighted sum over a geometric sequence
of weights, it is appropriate to presume an arbitrary number of
answers past the d th one, all with gain rt. That is, the finite
truncated gain vector 〈r1, r2, · · · , rd〉 is treated as an infinite one,
〈r1, r2, · · · , rd, rt, rt, rt, · · · 〉, and the RBP score computed as
normal. This has the same effect as taking the RBP residual at
depth d, which is given by pd, and multiplying it by rt. That is, we
define the adjusted RBP as

RBP′ = RBP′@d = (1− p) ·
d∑

i=1

ri · pi−1 + rt · pd . (2)

As a third example, consider NDCG. To adjust this metric to
handle truncated lists, we add rt as a (d + 1) th gain value, as for
RR, and then use the usual scoring approach to depth d + 1 rather
than to depth d:

NDCG′ = NDCG′@d =
DCG@(d+ 1)〈r1, r2, · · · , rd, rt〉

DCGI@(d+ 1)
.

(3)
Note that this approach also means that d is no longer a parameter
of the metric and is instead the length of the ranking supplied by
the system; note also that the ideal (d+1)-element ranking used in
the denominator includes an extra gain of 1.0 in the first zero-gain
position only if there are fewer than d+1 full- or part-gain answers
for the query. For example, if R = 3, and all gain values are binary,
then the ranking “101” leads to rt = 2/3, and is scored as:

NDCG′ =
1/ log 2 + 1/ log 4 + (2/3)/ log 5

1/ log 2 + 1/ log 3 + 1/ log 4 + 1/ log 5
= 0.698 ,

where the final term in the denominator arises because in an ideal
ranking of d = 3 documents, the corresponding ideal rt value
placed in the fourth position of the ranking would be 1.0.

Ranking R rt RR′ RBP′ NDCG′ AP′

“00” R = 0 1.000 0.333 0.250 0.500 0.333
“000” R = 0 1.000 0.250 0.125 0.431 0.250

“111” R = 3 1.000 1.000 1.000 1.000 1.000
“11” R = 3 0.667 1.000 0.917 0.922 0.648
“11100” R = 3 1.000 1.000 0.906 0.971 0.917
“101” R = 3 0.667 1.000 0.708 0.698 0.528
“1” R = 3 0.333 1.000 0.667 0.742 0.306
“10100” R = 3 0.667 1.000 0.646 0.678 0.491
“011” R = 3 0.667 0.500 0.458 0.554 0.403
“01001” R = 3 0.667 0.500 0.302 0.490 0.299

Table 1: Example truncated answer rankings and their modified
scores, for two different queries, one with R = 0 and one with
R = 3. The parameter p = 0.5 is assumed for the RBP computa-
tion. Within each group, the results are sorted by RBP′, which (by
chance, for these examples) also corresponds to RR′-order.

Average precision (AP) is handled similarly, by defining rd+1 =
rt, and then scoring the resulting extended-by-one ranking:

AP′ =
1

R+ 1

d+1∑

i=1

ri

∑i
j=1 rj

i
. (4)

As is also the case with NDCG′, the reference ranking used by AP′

contains R instances of ri = 1, followed by a nominal terminating
document with a gain of 1.0, that is, R+ 1 values in total.

Table 1 shows scores computed for a range of rankings using
the modified versions of RR, RBP, NDCG, and AP. The different
adjusted metrics place different emphases on the tradeoff between
recall and precision. All of the metrics respect the strict pairwise
orderings noted earlier, for example, that “101” ≥ “10100”; but
they vary in their response to other relativities, such as the question
as to whether “1” is better or worse than “101”. Note how the dif-
ferent metrics place different emphases on the rankings, resulting
in variations in their score orderings.

3. EXPERIMENTS AND RESULTS
Tasks and Test Collections To explore the ramifications of the
proposed approach, we employ the runs submitted to the main task
of the TREC 2001 QA track. Participants were invited to submit
a ranked list of [doc-id, answer-str] pairs of length up to five for
each question; and for questions deemed to have no answer, were
permitted to return “NIL” rather than one of the pairs. Overall, 36
groups contributed a total of 67 submissions to the QA main task;
47 of them are available for download.1 The question set consists
of 492 queries, 49 of which are nil-answer queries. The 443 has-
answer questions have on average 25.7 relevant answers each.

Interpretation of Truncation To evaluate the proposed approach,
we transform each individual run using the rules shown in Table 2,
so that we accurately capture any evidence of deliberate truncation.
The first two rules, covering cases where fewer than five results are
provided, or where an explicit “NIL” is provided, are evidence of
system-initiated truncation, and are processed as such in our com-
parison; in the third case we cannot infer truncation, and those runs
are retained intact and scored in the original manner by the unmod-
ified metrics throughout our experimentation.

1http://trec.nist.gov/results/trec10/qa_main_input.html

aNIL n modified run

i ≤ 5 a1, · · · , ai−1, t
−1 < 5 a1, · · · , an, t
−1 = 5 a1, · · · , a5

Table 2: Transformation of a run 〈a1, · · · , aNIL, · · · , an〉, where
aNIL is the rank of an explicit NIL document (either rank i ∈ [1, n],
or −1 indicating not present) to a new ranked list.

0 1 2 3 4 5
0

5,000

10,000

15,000

20,000

n-answer response
#

Original
Transformed

Figure 1: Distribution of lengths of 23,124 query responses.

Figure 1 shows the distribution before and after transformation
of the 23,124 runs submitted for the 492 queries by the 47 partici-
pants. The number of five-answer lists is reduced from around 20k
to 16k, generating a total of approximately 7k truncated answer
lists post-transformation. The number of zero-answer lists is zero
before the transformation, because even when a system believes a
query is a nil-answer question, it must return a “NIL” to indicate so.
This also accounts for the decline in the number of single-answer
responses post-transformation.

Results and Analysis We first compare the TREC QA systems
against each other using the TREC methodology (that is, with NIL
in runs given a gain of 1.0 iff a query is nil-answer and otherwise
given a gain of 0.0, and with metrics then applied in their stan-
dard form), and using our proposed modified approach applied to
the transformed version of each run. Four different effectiveness
metrics were explored, with the goal of determining the extent to
which systems are affected by the proposed alteration in methodol-
ogy. Each run for each system was scored using the two different
approaches, and then system averages computed. In all of these
evaluations, a [doc-id, answer-str] pair is considered correct iff the
answer-str contains an answer to the question and is supported by
the document specified by the doc-id.

Table 3 compares the system orderings generated by the four
pairs of original/modified metrics using Kendall’s τ, which com-
putes a correlation coefficient between pairs of ordered lists over
the same domain. Three evaluation metric pairs give rise to τ scores
greater than 0.9, indicating strong agreement between the system
ordering induced by the original metric and the system ordering
generated by its modified version. The strong agreement between
RR and RR′ was expected, because scores are primarily derived
from just one relevant document, and because only a minority of
the runs had explicit NIL markers. The similarly strong agreement
between NDCG and NDCG′ was more surprising. At the other
end of the scale, the pair AP/AP′ has the lowest τ among the four
metrics, but they are still strongly correlated.

0 0.2 0.4 0.6

0

0.2

0.4

0.6

A

B

RR

R
R
′

Figure 2: Relationship between RR and RR′ scores for 47 systems,
with each system’s score the mean over 492 queries.

Metric Pair Kendall’s τ

RR/RR′ 0.960
NDCG/NDCG′ 0.958
RBP@0.5/RBP′@0.5 0.916
AP/AP′ 0.870

Table 3: Kendall’s τ correlation coefficient calculated from the sys-
tem orderings generated by pairs of original and modified metrics.

Figure 2 provides details of the relationship between the RR and
RR′ scores for the set of systems. Overall, RR and RR′ are in
high agreement in regard to both system ordering (Table 3) and in
terms of the actual scores assigned. However, there are also in-
verted pairs, where a system is ranked higher by the original metric
but has inferior score in the modified. For example, the system
marked with “A” has a slightly higher score than does “B” for RR,
but is ranked lower than “B” by RR′ because of “B”s aggressive
(and effective) truncation strategy.

We also investigated the impact of truncation on performance
of individual systems. The horizontal axis in Figure 3 (% trun-
cation) is the fraction of answer lists of length less than five, in-
cluding NIL, but excluding terminal documents. Both of the top
two systems receive a boost in score when truncation is taken into
consideration. In the [0.15, 0.3] score range, despite the aggressive
truncation, there are systems that obtain little improvement, in part
due to their placement of a NIL at the end of every run. In addition,
much of the truncation is a consequence of the system’s inability
to find a correct answer, rather than intentionally terminating the
answer list. In such cases, even though there is explicit truncation,
the system is not rewarded as there is no relevant document in the
truncated answer list. Some systems sometimes prematurely trun-
cate an answer list by placing a NIL before relevant documents.
This causes the performance to drop when the modified metrics are
employed. Two of the systems generated a NIL in the fifth position
of all of their answer lists.

4. CONCLUSIONS AND FUTURE WORK
We have identified an opportunity to refine the way in which

truncated rankings are evaluated, and at the same time deal seam-

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

% Truncation

Sc
or

e

RBP
RBP′

Figure 3: Impact of proposed methodology on effectiveness scores
of the top 20 systems. Percentage truncation (horizontal axis) is the
fraction of truncated answers (length of answer list < 5, excluding
the terminal document), with the two points marking pre- and post
transformation scores. The RBP parameter is 0.5 throughout.

lessly with a well-known shortcoming of recall-based evaluation
metrics, namely, their inability to cope with queries with no rele-
vant documents. By providing modified effectiveness approaches
that provide subtle differentiation between runs of different lengths
(for example, because “110” < “11” in our mechanism, but not in
previous approaches to the problem) we are better able to nuance
system evaluations. The approach we employ – the appending of
a terminal document to every ranking, to indicate the truncation
point, and modifications to a range of standard evaluation metrics
including RR, RBP, NDCG and AP – is both intuitive, and also
easy to implement and apply. In retrieval experiments over a large
QA dataset, containing a non-trivial fraction of nil-answer queries,
we illustrated the effectiveness of the modified metrics, and demon-
strated that a refined evaluation of truncated document rankings can
help differentiate system orderings.

The obvious next step in our project is the development of meth-
ods for taking long document rankings and identifying, relative to
the truncation-sensitive metrics, the point in each at which trunca-
tion is appropriate. One possible way of approaching this problem
would be through analysis of the distribution of document scores
in the ranking, in both relative and absolute terms. Query analysis
could also be performed to predict the R value for a given query, for
incorporation into the truncation process. We leave this exploration
to future work.

Acknowledgments The authors thank MACE Engineering Group
for their early support of this work. The third author was supported
by ARC grant FT120100658.

References
[1] C. Buckley and E. M. Voorhees. Retrieval system evaluation. In E. M.

Voorhees and D. K. Harman, editors, TREC: Experiment and Evalua-
tion in Information Retrieval, chapter 3, pages 53–75. MIT Press, 2005.

[2] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR
techniques. ACM Trans. Inf. Sys., 20(4):422–446, 2002.

[3] A. Moffat and J. Zobel. Rank-biased precision for measurement of
retrieval effectiveness. ACM Trans. Inf. Sys., 27(1):2:1–2:27, 2008.

[4] A. Peñas and A. Rodrigo. A simple measure to assess non-response. In
Proc. ACL/HLT, pages 1415–1424, 2011.

[5] T. Sakai. New performance metrics based on multigrade relevance:
Their application to question answering. In Proc. NTCIR, 2004.

[6] E. M. Voorhees. Overview of the TREC 2001 question answering track.
In Proc. TREC, pages 42–51, 2002.

