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Abstract

Topic models with sparsity enhancement
have been proven to be effective at learn-
ing discriminative and coherent latent top-
ics of short texts, which is critical to
many scientific and engineering applica-
tions. However, the extensions of these
models require carefully tailored graphi-
cal models and re-deduced inference al-
gorithms, limiting their variations and ap-
plications. We propose a novel sparsity-
enhanced topic model, Neural Sparse Top-
ical Coding (NSTC) base on a sparsity-
enhanced topic model called Sparse Top-
ical Coding (STC). It focuses on replac-
ing the complex inference process with the
back propagation, which makes the model
easy to explore extensions. Moreover, the
external semantic information of words in
word embeddings are incorporated to im-
prove the representation of short texts. To
illustrate the flexibility offered by the neu-
ral network based framework, we present
three extensions based on NSTC without
re-deduced inference algorithms. Experi-
ments on Web Snippet and 20Newsgroups
datasets demonstrate that our models out-
perform existing methods.

1 Introduction

Topic models with sparsity enhancement have
proven to be effective tools for exploratory analy-
sis of the overload of short text content. The latent
representations learned by these models are cen-
tral to many applications. However, these mod-
els have trouble to rapidly explore variations for
the approximate inference methods of them. Even
subtle variations on models can increase the com-
plexity of the inference methods, which is espe-

cially apparent for non-conjugate models.
With the development of deep learning, many

works combine topic models with neural language
model to overcome the computation complexity of
topic models (Larochelle and Lauly, 2012a; Cao
et al., 2015; Tian et al., 2016). Most of these meth-
ods adopt multiple neural network layers to model
the generation process of each document. Nev-
ertheless, these methods yield the same poor per-
formance in short texts as traditional topic mod-
els. There are also many works introducing new
techniques such as word embeddings to traditional
topic models. Word embeddings has proven to be
effective at capturing syntactic and semantic infor-
mation of words. Many works (Das et al., 2015;
Hu and Tsujii, 2016; Xun et al., 2017) have shown
that the additional semantics in word embeddings
can enhance the performance of traditional topic
models. Yet these models have the same trouble in
making extensions as traditional topic models.

Based on the above observations, we propose
Neural Sparse Topical Coding (NSTC) by jointly
utilizing word embeddings and neural network
with a sparsity-enhanced topic model, Sparse Top-
ical Coding (STC). We adopt neural network to
model the generation process of STC to simplify
the complex inference and improve flexibility, and
incorporate external semantics provided by word
embeddings to improve the overall accuracy. To
illustrate the dramatic flexibility offered by the
end-to-end neural network, we present three ex-
tensions based on NSTC. Our proposed models
all benefit from both sides: 1) when compared
with the neural based topic models, which stuck
in the sparseness of word co-occurrence informa-
tion, they show how the sparsity mechanism and
word embeddings enrich the features and improve
the performance; 2) while with topic models with
sparsity enhancement, our models present how the
black-box inference method of neural network ac-
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celerates the training process and increases the
flexibility. The main contributions of this paper
are summarized as follows:

1. We develop a sparsity-enhanced neural topic
model NSTC to learn sparse representations
of words and documents and introduce the
general word semantic information by word
embeddings.

2. We present three variants of NSTC to illus-
trate the great flexibility of our framework.

3. We evaluate the effectiveness and efficiency
of our models by conducting experiments on
20 Newsgroups and Web Snippet datasets.

2 Related Work

Topic models with sparsity enhancement: The
performance of traditional topic models are com-
promised by the sparse word co-occurrence infor-
mation when applied in short texts. To overcome
the bottleneck, there have been many efforts to ad-
dress the problem of sparsity in short texts. Based
on traditional LDA, (Williamson et al., 2010) in-
troduced a Spike and Slab prior to model the spar-
sity in finite and infinite latent topic structures of
text. To consider the dual-sparsity of topics per
document and terms per topic, (Lin et al., 2014)
proposed a dual-sparse topic model that addresses
the sparsity in both the topic mixtures and the
word usage. There are also some non-probabilistic
sparse topic models, which can directly control
the sparsity by imposing regularizers. For exam-
ple, the non-negative matrix factorization (NMF)
(Heiler and Schnörr, 2006) formalized topic mod-
eling as a problem of minimizing loss function
regularized by lasso. Similarly, (Zhu and Xing,
2011) presented sparse topical coding (STC) by
utilizing the Laplacian prior to directly control the
sparsity of inferred representations. Additionally,
(Peng et al., 2016) presented sparse topical cod-
ing with sparse groups (STCSG) to find sparse
word, topic and document representations of texts.
However, over complicated inference procedure of
these sparse topic models make them difficult to
rapidly explore variations.

Topic models with word embeddings: There
are many works tried to incorporate word embed-
dings with topic models to improve the perfor-
mance. (Das et al., 2015) proposed a new tech-
nique for topic modeling by treating the document

as a collection of word embeddings and topics it-
self as multivariate Gaussian distributions in the
embedding space. However, the assumption that
topics are unimodal in the embedding space is not
appropriate, since topically related words can oc-
cur distantly from each other in the embedding
space. Therefore, (Hu and Tsujii, 2016) proposed
latent concept topic model (LCTM), which mod-
eled a topic as a distribution of concepts, where
each concept defined another distribution of word
vectors. (Nguyen et al., 2015) proposed Latent
Feature Topic Modeling (LFTM), which extended
LDA to incorporate word embeddings as latent
features. Lately, (Xun et al., 2017) proposed a
novel correlated topic model using word embed-
dings, which is enable to exploit the additional
word-level correlation information in word em-
beddings and directly model topic correlation in
the continuous word embedding space. However,
these models also have trouble to rapidly explore
variations.

Neural Topic Models: There are also some ef-
forts trying to combine topic models with neural
networks to represent words and documents si-
multaneously. (Larochelle and Lauly, 2012a) pro-
posed a neural network topic model that is sim-
ilarly inspired by the Replicated Softmax. (Cao
et al., 2015) proposed a novel neural topic model
(NTM) where the representation of words and
documents are efficiently and naturally combined
into a uniform framework. (Das et al., 2015) pro-
posed a new technique for topic modeling by treat-
ing the document as a collection of word embed-
dings and topics itself as multivariate Gaussian
distributions in the embedding space. To address
the limitations of the bag-of-words assumption,
(Tian et al., 2016) proposed Sentence Level Re-
current Topic Model (SLRTM) by using a Recur-
rent Neural Networks (RNN) based framework to
model long range dependencies between words.
Nevertheless, most of aforementioned works yield
poor performance in short texts.

3 Neural Sparse Topical Coding

Firstly, we define that D = {1, ...,M} is a doc-
ument set with size M , T = {1, ...,K} is a
topic collection with K topics, V = {1, .., N}
is a vocabulary with N words, and wd =
{wd,1, ..., wd,|I|} is a vector of terms representing
a document d, where I is the index of words in
document d, and wd,n(n ∈ I) is the frequency
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of word n in document d. Moreover, we denote
β ∈ RNK as a topic dictionary for the whole doc-
ument set with k bases, θd ∈ RK is the docu-
ment code of document d and sd,n ∈ RK is the
word code of word n in document d. To yield in-
terpretable patterns, (θ, s, β) are constrained to be
non-negative.

3.1 Sparse Topical Coding

STC is a hierarchical non-negative matrix factor-
ization for learning hierarchical latent representa-
tions of input samples. In STC, each document
and each word is represented as a low-dimensional
code in topic space, which can be employed in
many tasks. Based on the global topic dictionary
β of all documents with K topic bases sampled
from a uniform distribution, the generative process
of each document d is described as follows:

1. Sample the document code θd from a prior
p(θd) ∼ Laplace(λ−1).

2. For each observed word n in document d:

(a) Sample the word code sd,n from a
conditional distribution p(sd,n|θd) ∼
supergaussian(θd, γ

−1, ρ−1).
(b) Sample the observed word count wd,n

from a distribution p(wd,n|sd,n. ∗ βn) ∼
Poisson(sd,n. ∗ βn)

To achieve sparse word codes, STC defines
p(sd,n|θd) as a product of two component dis-
tributions p(sd,n|θd) ∼ p(sd,n|θd, γ)p(sd,n|ρ),
where p(sd,n|θd, γ) is an isotropic Gaussian dis-
tribution, and p(sd,n|ρ) is a Laplace distribution.
The composite distribution is super-Gaussian:
p(sd,n|θd) ∝ exp(γ||sd,nθd||22ρ||sd,n||1). With the
Laplace term, the composite distribution tends to
yield sparse word codes. For the same purpose,
the prior distribution p(θd) of document codes
is a Laplace prior. Although STC has closed
form coordinate descent equations for parameters
(θ, s, β), it is inflexible for its complex inference
process.

3.2 Neural Network View of Sparse Topical
Coding

We devote to rebuild STC with a neural network to
simplify it’s inference process via BackPropoga-
tion. After generating the topic dictionary from
neural network, our model follows the generative
story below for each document d:

1. For each word n in document d:

(a) Sample a latent variable word code
sd,n ∼ fg(d, n).

(b) Sample the observed word count
wd,n from p(wd,n|sd,n, βn) ∼
Poisson(sd,n. ∗ βn)

In our model, we have several assumptions:
1) To simplify our model and acclerate the infer-

ence process, we collapse the document code from
our model. As illuatrated in (Bai et al., 2013) and
STC paper (Zhu and Xing, 2011), we can naturally
generate each document code via a aggregation of
all sampled word codes among all topics, after in-
ferring the global topic dictionary and the word
codes of words belong to each document:

θd =
D∑
d=1

Nd∑
n=1

sd,nk βkn/
D∑
d=1

Nd∑
n=1

K∑
k=1

sd,nk βkn;

2) We replace the composite super-Gaussian
prior of the word codes and the uniform distri-
bution of the topic dictionary with the neural net-
work. In the topic dictionary neural network, we
introduce the word semantic information via word
embeddings to enrich the feature space for short
texts;

3) Similar to STC, the observed word count is
sampled from Poisson distribution, which is more
appropriate for the discrete count data than other
exponential family distributions.

3.3 Neural Sparse Topical Coding
In this section, we introduce the detailed layer
structures of NSTC in Figure 1. We explicitly ex-

( , )C d n

( , ) ( , ) ( )C d n s d n n 

Word basis layer ( )nWord code layer ( , )s d n

Topic dictionaryWord code ,2dW

Lookup tableWE

1( )relu WE W  

,2( , ) ( ( ,:))ds d n relu nW

( , )d n

 

Document d Word n

Figure 1: Schematic overview of NSTC.

plain each layer of NSTC below:
Input layer (n, d): A word n of document d ∈

D, where D is a document set.
Word embedding layer (WE ∈ RN×300): Sup-

posing the word number of the vocabulary is N ,
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this layer devotes to transform each word to a
distributed embedding representation. Here, we
adopt the pre-trained embeddings by GloVe based
on a large Wikipedia dataset 1.

Word code layers (s ∈ RN×K): These layers
generate the K-dimensional word code of input
word n in document d.

s(d, n) = fs(d, n) (1)

where fs is a multilayer perceptron. In order
to achieve interpretable word codes as in STC,
we constrain s to be non-negative, therefore we
apply the relu activation function on the output
of the neural network. Although imposing non-
negativity constraints could potentially result in
sparser and more interpretable patterns, we exert
l1 norm regularization on s to further keep the
sparse assumption.

Topic dictionary layers (β ∈ RN×K): These
layers aims at convertingWE to a topic dictionary
similar to the one in STC.

β(n) = fβ(WE) (2)

where fβ is a multilayer perceptron. We make a
simplex projection among the output of topic dic-
tionary neural network.We normalize each column
of the dictionary via the simplex projection as fol-
low:

β.k = project(β.k),∀k (3)

The simplex projection is the same as the sparse-
max activation function in (Martins and Astudillo,
2016), providing the theoretical base of its em-
ployment in a neural network trained with back-
propagation. After the simplex projection, each
column of the topic dictionary is promised to be
sparse, non-negative and united.

Score layer (C ∈ R1×|Id|): NSTC outputs the
matching score of a word n and a document dwith
the dot product of s(d, n) and β(n) in this layer.
The output score is utilized to approximate the ob-
served word count wd,n.

C(d, n) = s(d, n). ∗ β(n) (4)

Given the count wd,n of word n in document d,
we can directly use it to supervise the training pro-
cess. According to the architecture of our model,
for each word n and each document d, the cost
function is:

L = l(wd,n, C(d, n)) + λ||sd,n||1 (5)
1http://nlp.stanford.edu/projects/glove/

where l is the log-Poisson loss, λ is the regulariza-
tion factors.

3.4 Extensions of NSTC
To future illustrate the benefits of a black box in-
ference method, which allows rapidly explore new
models, we present three variants of NSTC.

Deep l1 Approximation. STC is based on the
idea of sparse coding, in which the sparse code
s of the input w can be obtained by solving the
loss function for a given dictionary β. In (Gre-
gor and LeCun, 2010), the parameterized encoder,
named learned ISTA (LISTA) was proposed to ef-
ficiently approximate the l1 based sparse code.
Based on the consideration, we present a enhanced
NSTC via employing the deep l1 regularized en-
coder similar to LISTA, named NSTCE. We de-
vise a feed-forward neural network as illustrated
in Figure 2, to efficiently approximate the l1 based
sparse code s of the input w.

F (wd;Wd, bd) = relu(wd ∗Wd + bd) (6)

The goal is to make the prediction of neural net-
work predictor F after the fixed depth as close
as possible to the optimal set of coefficients s∗ in
Eq.4. To jointly optimizing all parameters with the
dictionary β together, we add another term to the
loss function in Eq.4, and enforce the representa-
tion s to be as close as possible to the feed forward
prediction (Kavukcuoglu et al., 2010):

L =l(wd,n, C(d, n)) + λ||sd,n||1
+ α

∑
n

||sd − F (wd;Wd, bd)||22
(7)

Minimizing the loss with respect to s produces a
sparse representation that simultaneously recon-
structs the word count and is not too different from
the predicted representation.

w
W

b

s

relu

Figure 2: Deep l1 encoder.

Group Sparse Regularization. Based on STC,
(Bai et al., 2013) presented GSTC to discover
document-level sparse or admixture proportion for
short texts, in which the group sparse is employed
to achieve sparse code at document level by taking
into account the structure of bag of words. Here,
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we just need to add the group sparse regularization
on the weight matrix, to make a neural network
extension of GSTC, called NGSTC. We consider
each column of sd as a group.

L = l(wd,n, C(d, n)) + λ

K∑
k=1

||sd,.k||2 (8)

Sparse Group Lasso. Similar to GSTC,
STCSG (Peng et al., 2016) was proposed to learn
sparse word and document codes, which relaxes
the normalization constraint of the inferred rep-
resentations with sparse group lasso. Base on
STCSG, we propose a novel neural topic model
called NSTCSG. We imposse the sparse group
lasso on the word code, and have the following
cost function:

L = l(wd,n, C(d, n))+λ1||sd,n||1+λ2
K∑
k=1

||sd,.k||2

(9)
These three models have the same neural network
structures as NSTC, and can be trained end to
end with out re-deduced mathematical inference.
Moreover, group and sparse group sparsity can
help reduce the intrinsic complexity of the model
by eliminating neurons as shown in Figure 3, and
thus can help obtain practical speed ups in deep
neural networks.

3.5 Optimization
For the first two models with the lasso regular-
izer, we can directly ulitize the end to end stochas-
tic gradient descent (SGD) to perform optimiz-
ing. The last two optimizing objectives of NGSTC
and NSTCSG are formed as a combination of
both smooth and non-smooth terms, they can be
solved via proximal stochastic gradient descent.
The proximal gradient algorithm first obtains the
intermediate solution via SGD on the loss only,
and then optimize for the regularization term via
performing Euclidean projection of it to the solu-
tion space, as in the following formulation:

min
st+1
d,n

R(st+1
d,n ) +

1

2
||st+1

d,n − s
t+ 1

2
d,n ||

2
2 (10)

where R is the regularization, s
t+ 1

2
d,n the intermedi-

ate solution obtained by SGD, st+1
d,n is the variable

to obtain after the current iteration. For the group
lasso, the above problem has the closed-form so-
lution. The proximal operator for the group lasso

regularizer in Eq.8 is given as follow:

proxGL(sd,nk) = (1− λ

||sd,.k||2
)+sd,nk (11)

The proximal operator for the sparse group lasso
regularizer in Eq.9 is given as follow:

proxSGL(sd,nk) =(1− λ2
||sign(sd,.k, λ1)||2

)+

sign(sd,nk, λ1)

(12)

The detailed algorithm framework of NGSTC and
NSTCSG is shown in Algorithm 1.

Algorithm 1 Training Algorithm for our models

Require: a document d ∈ D
1: t = t+ 1
2: repeat
3: Compute the partial derivatives of weight

matrices,s, and β with a non-regularized
objective;

4: Update weight matrices, s, and β using
SGD.

5: Update s using proximal operator
6: Update β using simplex projection.
7: until convergence

4 Experiments

4.1 Data and Setting
We perform our experiments on two benchmark
datasets:

• 20Newsgroups: is comprised of 18775
newsgroup articles with 20 categories, and
contains 60698 unique words 2.

• Web Snippet: includes 12340 Web search
snippets with 8 categories, we remove the
words with fewer than 3 characters and
with document frequency less than 3 in the
dataset.3.

We compare the performance of the NSTC with
the following baselines:

• LDA (Blei et al., 2001). A classical proba-
bilistic topic model. We use the LDA pack-
age4 for its implementation. We use the set-
tings with iteration number n = 2000, the

2http://www.qwone.com/ jason/20Newsgroups/
3http://jwebpro.sourceforge.net/data-web-snippets.tar.gz
4https://pypi.python.org/pypi/lda
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(a) (b) (c)

Figure 3: (a) Lasso: the Lasso penalty removes elements without optimizing neuron-level considerations
(highlighted in red). (b) Group lasso: when grouping weights from the the same input neuron into each
group, the group sparsity has an effect of completely removing some neurons (highlighted in red). (c)
Sparse group lasso: it combines the advantages of the former two formulations, which can remove some
neurons and elements (highlighted in red).

Dirichlet parameter for distribution over top-
ics α = 0.1 and the Dirichlet parameter for
distribution over words η = 0.01.

• STC (Zhu and Xing, 2011). It is a sparsity-
enhanced non-probabilistic topic model. We
use the code released by the authors 5. We set
the regularization constants as λ = 0.3, ρ =
0.0001 and the maximum number of itera-
tions of hierarchical sparse coding, dictionary
learning as 100.

• DocNADE (Larochelle and Lauly, 2012b).
An unsupervised neural network topic model
of documents and have shown that it is a com-
petitive model both as a generative model and
as a document representation learning algo-
rithm 6. In DocNADE, the hidden size is 50,
the learning rate is 0.0004 , the bath size is 64
and the max training number is 50000.

• GaussianLDA (Das et al., 2015). A new
technique for topic modeling by treating the
document as a collection of word embed-
dings and topics itself as multivariate Gaus-
sian distributions in the embedding space 7.
We use default values for the parameters.

Our three models are implemented in Python using
TensorFlow8. For both datasets, we use the pre-
trained 300-dimensional word embeddings from
Wikipedia by GloVe, and it is fixed during train-
ing. For each out-of-vocab word, we sample a
random vector from a normal distribution. In
practice, we use a regular learning rate 0.00001
for both dataset. We set the regularization factor

5http://bigml.cs.tsinghua.edu.cn/ jun/stc.shtml/
6https://github.com/huashiyiqike/TMBP/tree/master/DocNADE
7https://github.com/rajarshd/Gaussian LDA
8https://www.tensorflow.org/

λ = 1, α = 1, λ1 = 0.6, λ2 = 0.4. In initial-
ization, all weight matrices are randomly initial-
ized with the uniformed distribution in the inter-
val [0, 0.001] for web snippet, and [0, 0.0001] for
20Newsgroups.

4.2 Classification Accuracy
We perform text classification tasks on Web Snip-
pet dataset and 20Newsgroups. For the Web Snip-
pet, we follow its original partition that consists
of 10060 training documents and 2280 test doc-
uments. On 20Newsgroups, we we keep 60%
documents for training and 40% for testing as in
(Zhu and Xing, 2011). We adopt the SVM as
the classifier with the document representations
learned by topic models. Figure 4 reports the con-
vergence curves of loss and accuracy over itera-
tions. The results show that the loss and accu-
racy of our method can achieve convergence af-
ter almost 100 epochs on web snippets and 50
epochs on 20Newsgroups with appropriate learn-
ing rate. Table 1 reports the classification ac-
curacy on both datasets under different methods
with different settings on the number of topics
K = {50, 100, 150, 200, 250}. We can found
that 1) The NSTCSG yields the highest accuracy,
followed by NGSTC, NSTCE and NSTC which
all outperform the DocNADE, GLDA, STC and
LDA. 2) The embedding based models (NSTCSG,
NGSTC, NSTCE, NSTC, DocNADE and GLDA)
generate better document representations than
STC and LDA separately, demonstrating the rep-
resentative power of neural networks based on
word embeddings. 3) Sparse models (NSTCSG,
NGSTC, NSTCE, NSTC and STC) are superior to
non-sparse models NTM and LDA separately. It
indicates that sparse topic models are more suit-
able to short documents. 4) The NSTCSG perform
better than NGSTC, followed by NSTC, which il-
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lustrates both sparse group lasso and group lasso
penalty are contribute to learning the document
representations with clear semantic explanations.
5) The NSTCE and NSTC have similar perfor-
mances on two datasets.
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Figure 4: The loss and accuracy curves with the
iterations on two datasets,on different number of
topic K settings.
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(b) document codes

Figure 5: The average sparsity ratio of word and
document codes.

4.3 Sparse Ratio

We further compare the sparsity of the learned la-
tent representations of words and documents from
different models on Web Snippet.

Word code: For each word n, we compute
the average word code and average sparsity ra-
tio of them as in (Zhu and Xing, 2011). Fig-
ure 5a presents the average word sparse ratio of
word codes discovered by different models for
Web Snippet. Note that the NGSTC can not yield
sparse word codes but sparse document codes. We
can see that 1) The NSTCSG learns the sparsest

word codes, followed by NSTC and STC, which
perform much better than NTM and LDA. 2) The
word codes discovered by LDA and NTM are
very dense for lacking the mechanism to learn the
focused topics. The sparsity in both models is
mainly caused by the data scarcity. 3)The rep-
resentations learned by sparse models (NSTCSG,
NSTC and STC) are much sparser, which indi-
cates each word concentrates on only a small num-
ber of topics in these models, and therefore the
word codes are more clear and semantically con-
centrated. 4) Meanwhile, the sparse ratio of STC
and NSTC are lower than NSTCSG. It proves the
sparse group lasso penalty can easily allow to pro-
vide networks with a high level of sparsity.

Document code: We further quantitatively
evaluate the average sparse ratio on latent repre-
sentations of documents from different models,
as shown in Figure 5b. We can see that 1) The
NSTCSG yields the highest sparsity ratio, fol-
lowed by NGSTC and STC, which outperform
NTM and LDA by a large margin. 2) The docu-
ment codes discovered by LDA and NTM are still
very dense, while the representations learned by
sparse models (NSTC and STC) are much sparser.
It indicates the sparse models can discover focused
topics and obtain discriminative representations of
documents. 3) Similar to the word code, NGSTC
outperforms NGSTC and STC. It demonstrates
that the sparse group lasso penalty can achieve bet-
ter sparsity than group lasso and lasso. 4) The
sparsity ratios of sparse models increase with the
topic numbers. The possible reason is that the
sparse models tend to learn the focused topic num-
ber which approaches to the real topic number, and
an increasing number of redundant topics can be
discarded. 5) The NSTCSG inherits the advan-
tages of NSTC and NGSTC, which can achieve
the sparse topic representations of words and doc-
uments.

4.4 Quality of Extracted Topics and
Representations

In table 2, we show the top-9 words of learned fo-
cused topics in 20 Newsgroups datasets. For each
topic, we list top-9 words according to their prob-
abilities under the corresponding topic. It is obvi-
ous that the learned topics are clear and meaning-
ful. Such as economics, hockey, games, play, ball
in the topic about sport. In Figure 6, we also use
the 2-dimensional t-SNE method to get the visu-
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Table 1: Classification accuracy of different models on Web snippet and 20NG, with different number of
topic K settings.

Dataset Snippet 20NG
k 50 100 150 200 250 50 100 150 200 250

LDA 0.682 0.592 0.573 0.615 0.583 0.545 0.615 0.607 0.613 0.623
STC 0.678 0.699 0.724 0.731 0.723 0.602 0.631 0.647 0.652 0.654

DocNADE 0.656 0.656 0.645 0.646 0.647 0.682 0.670 0.646 0.583 0.573
GLDA 0.669 0.689 0.675 0.670 0.623 0.367 0.438 0.465 0.496 0.526
NSTC 0.734 0.756 0.791 0.793 0.789 0.634 0.671 0.682 0.690 0.72

NSTCE 0.739 0.778 0.801 0.803 0.810 0.631 0.681 0.682 0.701 0.721
NGSTC 0.773 0.792 0.813 0.811 0.821 0.670 0.681 0.701 0.712 0.737

NSTCSG 0.788 0.813 0.821 0.823 0.829 0.665 0.687 0.691 0.717 0.735

Table 2: Top Words of Learned Topics for 20Newsgroups.

computer sport drug weapon space-flight atheism medication politics
computer hockey tobacco nuclear nasa matthew cancer turkey
windows games drug guns flyers state insurance south

ibm motorcycl fallacy crime space atheism technology bill
drive team aids booming air book life adress
disk play hiv controller statelite god hiv congress

system groups dades firearms send jesus des rockefeller
dos came illeg military launch truth patients cosmo
key rom same wiring apartment faq water american

hardware ball adict neutral la church health slave

alization of the learned latent representations for
Web Snippet and 20Newsgroups Dataset with 200
topics. For Web Snippet, we sample 10% of the
whole dataset. For 20newsgroups, we sample 30%
of the dataset. It is obvious to see that all doc-
uments are clustered into 8 and 20 distinct cate-
gories. It proves the semantic effectiveness of the
documents codes learned by our model.
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Figure 6: T-SNE embeddings of learned document
representations for Web Snippet and 20News-
Groups. Different colors mean different cate-
gories.

5 Conclusion

In this paper, we propose a novel neural sparsity-
enhanced topic model NSTC, which improves

STC by incorporating the neural network and
word embeddings. Compared with other word
embedding based and neural network based topic
models, it overcomes the computation complex-
ity of topic models, and improve the generation of
representation over short documents. We present
three variants of NSTC to illustrate the great flex-
ibility of our framework. Experimental results
demonstrate the effectiveness and efficiency of our
models. For future work, we are interested in vari-
ous extensions, including combining STC with au-
toencoding variational Bayes (AVB).
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